
Working with Status Bar Controls
Note:
Status Bar Controls are not to be confused with the traditional dialog status bar which is created by selecting the
’status bar’ check box in the Dialog Atttributes Window in the Dialog Editor, or by setting the dialog’s
HAS-STATUS-BAR attribute at run-time. If you are using status bar controls, you should leave the ’status bar’
checkbox unchecked and not set the HAS-STATUS-BAR attribute.

Creating a Status Bar Control

Status bar controls are created in the Dialog Editor in the same way as other standard controls (such as list boxes or
push buttons) are. That is, they are either created statically in the Dialog Editor via the Insert menu or by drag and
drop from the Insert tool bar, or dynamically at run-time by using a PROCESS GUI ACTION ADD statement with
the TYPE attribute set to STATUSBARCTRL.

Unlike most other control types, status bar controls cannot be nested within another control and cannot be created
within an MDI child dialog. In an MDI application, the status bar control(s) must belong to the MDI frame dialog.

A status bar control may have zero or more panes associated with it. Panes may be defined in the Dialog Editor from
within the status bar control’s attribute window, or at run-time by performing a PROCESS GUI ACTION ADD
statement with the TYPE attribute set to STATUSBARPANE.

Using status bar controls without panes

A status bar control without panes offers restricted functionality, because most attributes providing access to the
enhanced functionality of status bar controls are only supported for status bar panes. If you wish to do more with a
Status Bar Control than simply display a line of text, but don’t need to split up the status bar control into multiple
sections, you should create a single pane that occupies the full width of the Status Bar Control.

Stretchy vs. non-stretchy panes

If panes are defined for a status bar control, it should be decided whether each pane should stretch (or contract) when
the containing dialog is resized, or whether it should maintain a constant width. The former are referred to here as
’stretchy’ panes, and the latter as ’non-stretchy’ panes.

There is no explicit flag in the Status Bar Control Attributes window to mark a pane as stretchy or non-stretchy.
Instead, any pane defined with a width (RECTANGLE-W attribute) of 0 is implicitly assumed to be a stretchy pane,
whereas any panes with a non-zero width definition are implicitly assumed to be fixed-width panes of the specified
width (in pixels). Because the RECTANGLE-W attribute defaults to 0, all panes are initially stetchy when defined in
the Dialog Editor.

The width of a visible stretchy pane is determined by taking the total width available for all panes in the Status Bar
Control, subtracting the widths of all visible fixed-width panes, then dividing the result by the number of visible
stretchy panes.

Note:
The total available width for all panes normally excludes the sizing gripper, implying that the last pane stops short of
the gripper, if present. However, if the Status Bar Control has exactly one pane, and that pane is a stretchy pane, the
full width of the dialog (including any sizing gripper) is used.

Outputting text to a status bar control

Text can be output to the status bar control in one of three ways:

1Copyright Software AG 2003

Working with Status Bar Controls<Untitled>

1. For status bar controls with panes, by setting the STRING attribute of the pane whose text is to be set.
2. By setting the STRING attribute of the Status Bar Control itself, which is equivalent to setting the STRING

attribute of the first stretchy pane (if any) for status bar controls with panes.
3. By setting the STATUS-TEXT attribute of the dialog. This is equivalent to setting the STRING attribute of the

Status Bar Control (if any) identified by the dialog’s STATUS-HANDLE attribute.

Note that the last method is often the most convenient for setting the message text, because it does not require a
knowledge of the status bar control or pane handles.

Example:

DEFINE DATA LOCAL
01 #DLG$WINDOW HANDLE OF WINDOW
01 #STAT-1 HANDLE OF STATUSBARCTRL
01 #PANE-1 HANDLE OF STATUSBARPANE
END-DEFINE
...
#DLG$WINDOW.STATUS-HANDLE := #STAT-1
...
#PANE-1.STRING := ’Method 1’
...
#STAT-1.STRING := ’Method 2’
...
#DLG$WINDOW.STATUS-TEXT := ’Method 3’

Note:
The Dialog Editorautomatically generates code to set the STATUS-HANDLE attribute to the first status bar control
(if any). Therefore, the STATUS-HANDLE attribute only needs to be set explicitly if you are dynamically creating
status bar controls, or if you have defined more than one status bar control in a dialog, and wish to switch between
them.

Sharing a status bar in an MDI applications

Because status bar controls cannot be created for MDI child dialogs, it is convenient to not have to define multiple
status bar controls in the MDI frame dialog. An alternative method is to define just a single status bar, and share it
between each child dialog. This can be achieved as follows:

1. Define all possible panes you wish to use in your application within a single status bar control in the MDI frame
dialog.

2. Mark all panes as ’shared’.
3. Export the handles of all panes to corresponding shadow variables in a GDA, so that the MDI child dialogs can

access them directly.
4. In the COMMAND-STATUS event handler, set the VISIBLE attribute of all panes you wish to display for that

dialog to TRUE. All other panes will be automatically made invisible.

Note:
In the COMMAND-STATUS event, you must also set the ENABLED state of any commands (signals, or menu or
tool bar items which do not reference another object via their SAME-AS attribute) associated with the dialog,
otherwise they will be automatically disabled. The commands associated with the dialog are all non-shared
commands for the MDI frame and all shared commands for the active MDI child (or MDI frame, if no MDI child
dialog is active).

Copyright Software AG 20032

<Untitled>Sharing a status bar in an MDI applications

Pane-specific context menus

Context menus are defined for the Status Bar Control and not per-pane. However, if you wish to ensure that the
context menu for a status bar control only appears when the user right clicks a particular pane, you can associate a
context menu with the Status Bar Control, but suppress it if the user clicks outside that pane.

Example:

DEFINE DATA LOCAL
01 #CTXMENU-1 HANDLE OF CONTEXTMENU
01 #STAT-1 HANDLE OF STATUSBARCTRL
01 #PANE-1 HANDLE OF STATUSBARPANE
01 #PANE-2 HANDLE OF STATUSBARPANE
01 #PANE-3 HANDLE OF STATUSBARPANE
01 #PANE HANDLE OF STATUSBARPANE
01 #X (I4)
01 #Y (I4)
END-DEFINE
...
#STAT-1.CONTEXT-MENU := #CTXMENU-1
...
DECIDE ON FIRST *CONTROL
 ...
 VALUE #CTXMENU-1
 DECIDE ON FIRST *EVENT
 ...
 VALUE ’BEFORE-OPEN’
 /* Get click position relative to status bar control
 PROCESS GUI ACTION INQ-CLICKPOSITION WITH
 #STAT-1 #X #Y GIVING *ERROR
 /* Get pane (if any) at specified position
 PROCESS GUI ACTION INQ-ITEM-BY-POSITION WITH
 #STAT-1 #X #Y #PANE
 /* Only show context menu if user clicked in second pane
 IF #PANE = #PANE-2
 #CTXMENU-1.ENABLED := TRUE
 ELSE
 #CTXMENU-1.ENABLED := FALSE
 END-IF
 ...
 END-DECIDE
 ...
END-DECIDE
...
END

Note:
If you wish to display a different context menu for different status bar panes, the menu items must be created
dynamically in the context menu’s BEFORE-OPEN Event.

Back to Event-Driven Programming Techniques.

3Copyright Software AG 2003

Pane-specific context menus<Untitled>

	Working with Status Bar Controls
	
	Creating a Status Bar Control
	Using status bar controls without panes
	Stretchy vs. non-stretchy panes
	Outputting text to a status bar control
	Sharing a status bar in an MDI applications
	Pane-specific context menus

